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Abstract—Medical diagnosis is often made on the basis of
information from visualisation instruments such as CT scan-
ners. This information is currently used by medics only and,
in most cases, browsed manually. This paper presents technical
issues which are prerequisite to decision-support systems which
analyse such data and provide new ways to present the data
so as to make it most useful to clinicians, taking the domain of
renal (kidney) cancer care as an example. In the long term such
systems can also be used to improve communication between
medics and patient, and may also enable communication with
remote consultants.

Index Terms—Decision support systems, medical informatics,
medical imaging, abdominal CT, renal cancer

I. INTRODUCTION

Although kidney cancer accounts for only 3% of all

cancers [1], its survival rate continues to be fairly low. It

is around 50% at one year and 75% at five years for early

stage kidney cancers; worse still, the five-year survival rate

is only around 10% for patients with metastases [2], [3].

It is more commonly the case (at least in the developed

world) that kidney cancer is being diagnosed at smaller sizes

than before because of the recent technological progress in

the use of imaging techniques [4]. A vast quantity of infor-

mation is being generated in this way, creating a pressing

need for better data analysis methods, as well as for new

ways to present the data to make it more useful.

Our medium-term goal is to provide clinicians with a

tool which would help them decide whether to operate on a

patient immediately or not. For kidney cancer sufferers this

decision has strong quality-of-life implications as lifelong

dialysis is required by patients who have lost their kidney

function. In some cases it is better not to operate, but rather

to keep such patients under active surveillance. (A longer-

term goal will adapt the techniques to other forms of cancer.)

II. PROPOSED DECISION SUPPORT SYSTEM

We have been working on the requirements of a decision-

support system (DSS) [5] which would help medics in the

complex actions they need to take when treating kidney

cancer sufferers, where the main diagnostic tool is CT

(computerised tomography) images. We can summarise the

main activities around the DSS in three use cases, namely

diagnosis, treatment, and follow-up. The possible presence

of kidney cancer is normally suggested by clinical problems,

at which point a consultant will send the patient for a CT
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scan. The radiographer will normally spot a potential tumour,

and may take steps to emphasise it on the image set. The

scans are subsequently viewed by a series of consultants

involved in the diagnosis. Treatment may involve surgical

removal of the tumour, or of the whole kidney; or the

tumour may be left to see if it grows; or the tumour may be

attacked via chemotherapy, immunotherapy, radiotherapy or

high intensity focused ultrasound (HIFU). In the latter cases

especially it is vital to keep track of the tumour, and even if

a tumour is removed, follow-up scans will be scheduled to

look for any sign of the cancer metastasising. For any patient

who is diagnosed with cancer, therefore, there is a need to

be able to catalogue sets of scans, and to be able to compare

scans.

A. Segmentation

Fully-automated segmentation of clinical images is gen-

erally an unsolved problem [6], [7], [8], and is expected

to remain so for the foreseeable future. Radiographers are

highly-skilled individuals with a lot of responsibility, who

are rightly suspicious of automated programs which may

or may not produce the correct output. Whilst automated

segmentation has the potential to save them a great deal

of time (manual segmentation can take hours), ideally they

should be able to input information interactively into the

segmentation process: in other words they should be able

to visualise what the program is generating and to adjust the

output. This kind of interactive process is still somewhere

down the line, since the segmentation information needs to

be presented by the DSS in a way which is easy to understand

and manipulate. The feature segmentation and identification

process is necessary for a variety of applications such as

3D visualization [9] and volume estimation [10].

B. 3D visualisation

It is possible to achieve 3D visualisation by applying a

marching cubes-style [9] algorithm (M3C). However, the

input to this algorithm relies on individual features in each

CT slice having been labelled. Hence organ identification is

a central precondition to the well-functioning of a decision

support system of the kind we propose.

Our DSS will allow clinicians to view a tumour and any

adjacent organs or blood vessels from any chosen angle (see,

for example, Figure 1), and will render slices through it

(in any plane) as necessary. If the automatically generated

segmentation is not satisfactory, the system may allow for



Fig. 1. Visualisation of CT abdominal scan data set using M3C

interactive segmentation, including the ability to adjust the

computer-generated results as required.

We hope to enable users to visualize the progression of a

patient’s tumour (or kidney, in the case of partial nephrec-

tomy) over time. This can be achieved by linking imaging

data taken during the patient’s surveillance to geometrical

models of kidney function or tumour growth. The idea is to

use the available scans to construct a model of the situation at

discrete points in time, that can then be interpolated. Thus the

DSS would ultimately provide ‘navigation’ in time, giving

clinicians a way to see any changes in volume and shape.

We believe that this sort of approach will help consolidate

the data available to clinicians into a format which is easy

for them to use constructively [11], [12], thus helping them

to improve patient care.

C. Volume calculation

Segmentation and feature identification are also key steps

in the process of volume calculation. Clearly, once the

measured feature has been identified on each of the slices

of the scan, the volume calculation is straightforward. For

example, to calculate the volume of a labelled tumour, we

can use Formula (1). This sums the volumes contributed by

each slice to calculate an overall volume for the tumour.

The contribution from slice i is calculated as the number

of pixels p in the slice (with pixel set Pi) whose label

ℓ(p) = FEATURE (which can be chosen to be tumour,

kidney, blood vessel, etc.), multiplied by the thickness thi

of the slice, calculated as the perpendicular distance between

adjacent slices. In practice, we use a higher-order method

(Simpson’s rule), which still only requires a linear scan of

the data.
∑

ithi

(

∑

p∈Pi
(ℓ(p) = FEATURE ? 1 : 0)

)

(1)

The key issue here is identifying which pixels belong to the

relevant feature (e.g. a tumour). Quite apart from the usual

problem of identifying a tumour, the subsequent treatment

may make it harder to identify; for example, if HIFU is used

on it.

III. FEATURE IDENTIFICATION

We have already explained that feature identification plays

an important role in the analysis of medical data. It is not an

(a) Vertebra on slice n (b) slice n + 1 (c) Fuzzy boundary

Fig. 2. Image issues which hinder automatic segmentation

easy task to specify, let alone carry out, because sections

through features can vary significantly from one slice to

the next. Figures 2(a) and 2(b) show how (in a series with

slices 5mm apart) consecutive sections through a vertebra

have different shape. Figure 2(c) illustrates another reason

why features are difficult to identify, even by experienced

radiographers: the precise boundaries between features often

appear unclear in the images.

A. Prerequisites

The Hounsfield Units (HU) produced in the CT scanning

process are associated with each of the pixels generated in

the data, and are proportional to the density of the tissue at

that point. The images are displayed by any data viewers in

a greyscale range, because this is what monitors can display

and what the human eye can discern. This conversion causes

some HU to be mapped to the same greyscale value, but

nevertheless the original density is retained in the data.

So far we have been able to identify some features in the

image automatically, although some continue to be labelled

by hand. For the purpose of automatic feature identification

we have used a series of techniques. Some of them use

merely the greyscale values in the image, whereas some

are based on the HU information. Unsurprisingly, these

techniques appear to work well for specific parts of the body

but not so well for other parts.

B. Bayesian approach

Our initial approach to feature identification has been to

use a Bayesian classifier to quantify the extent to which a

region resembles a feature of interest, based on some subset

of the generated properties for that region. Ribs were chosen

as the initial target of our algorithm because their high grey

levels make them one of the easier features to identify on an

image. The resulting process is fully automatic and works

reasonably well. Figure 4(a) illustrates how it can pick out

ribs from an abdominal scan.

The classifier was designed in terms of four properties of

the region: its area, its elongatedness, the maximum grey

value and the mean grey value in the region. The calculation

is explained fully in our paper [13].

C. Statistical analysis

Since the HUs generated by the CT scanner are propor-

tional to the density of the tissue, it is possible to use this



(a) Overlapping HU values
for liver (red) and kidney
(blue)

(b) Statistical analysis of features:
liver (magenta), spleen (cyan),
kidney (yellow)

Fig. 3. Use of statistical analysis on images

information for a broad classification of the features present

in the image. Typical HU tables for particular types of tissue

are widely available. These tables make it easy to tell apart

bone from soft tissue, and muscle from fat. What it is not

possible to do easily is to distinguish the different organs

from each other. For example, the respective HU ranges for

liver and kidney tissue overlap significantly, as shown by the

histogram in Figure 3(a).

In order to narrow down further the categorisation of

these types of tissue it is possible to carry out some careful

statistical analysis of the data. A pre-processing stage is used

whereby one or more sample regions of a particular kind of

feature (e.g. kidney) are labelled manually. The algorithm

uses that information in order to label other regions in the

image. In Figure 3(b) we see that it is not sufficient to apply

this kind of statistical analysis on its own. Whilst the results

are reasonably good, they are in need of post processing in

order to label all the features correctly. The major advantage

of this technique, though, is that it can identify more than

one type of tissue in the same pass through the region.

D. Flooding approach

We have recently begun work on an alternative flood-

ing approach to feature identification. This is essentially a

modified region-growing process. It is based on the region

adjacency graph of the image which, in turn, is constructed

using a waterfall algorithm [14].

Instead of doing region-growing on a per-pixel basis, we

do it per-region. The results are then post-processed. We start

by automatically picking a number of potential region seeds

for the feature of interest based on HU, area and location,

then flood outwards. The feature is ultimately identified as

a collection of sub-features which entirely cover its area.

The way in which location information can be used will be

explained in §III-E. The algorithm grows regions according

to a combination of criteria, and then post-processes the final

regions to remove any artifacts. We have used this method to

identify vertebrae on a significant number of very different

image series with good results, and plan to make further use

of this in our automatic localization work. Some preliminary

results are shown in Figure 4(b). Note that the higher grey

area inside the boundary of the vertebra is correctly identified

as part of the vertebra (hence the double thickness border

around it), whereas the lower grey area (the spinal cord) is

correctly ignored.

(a) Rib identification (b) Vertebra identification

Fig. 4. Examples of features automatically identified correctly

E. Other techniques

As explained in §III-D, it is sometimes useful to use the

location of a feature in the image, as usually most of the

organs are in the expected places so if the region is well

away from the expected location for that type of tissue it

can be discarded. (However tumours may push organs out of

position.) One possible alternative is to move the origin of

the coordinate system to a fixed position on the spine (or the

vertebra featured in each image). One paper which proposes

this scheme [15] uses it to produce interesting results.

There is a category of patients for whom such location

methods are not applicable, namely those who have had an

auto-transplant. In this case, their auto-transplanted kidney

may be located towards the ventral side of the abdomen.

F. Use of the labelling techniques

In our work on segmentation [5], [13] we show how a

segmented image can be stored as a collection of partition

hierarchies. This technique summarises the information in

the image in a way which allows for efficient searches. It is

thus possible to use certain criteria in the search for features

(as regions in the image). This data structure is central to all

of our feature identification methods because the properties

of each type of feature can be described in terms of certain

parameters prior to any search or labelling.

IV. RESULTS

A. Feature identification

We tested the three feature identification techniques pre-

sented in §III-B, §III-C and §III-D on a number of dif-

fering image series. The first method, a Bayesian classifier

approach, yielded good results for rib identification, also

reported in [13]. (Other classifiers may also be used.)

Our second method used more sophisticated statistical

analysis techniques to classify regions by texture, but, as

expected, was incapable of dealing with the problem of

regions sharing a similar texture but representing different

features in the image.

Our latest method seeks to address this latter problem by

incorporating localization information via the medium of a

region-growing process. We have tested this approach on a

wide variety of image series and achieved good automatic

identification results for vertebrae.



Fig. 5. Visualisation of the kidney after partial nephrectomy

B. Volume calculation

We used our volume calculator to calculate remaining

kidney volume on around 20 data sets as part of a study

correlating loss of renal volume with loss of renal function in

patients who had undergone a partial nephrectomy. Figure 5

shows a visualization of one of the kidneys measured: the

volume of the kidney was estimated to be 253cm3.

Our results were verified by the surgeons engaged in the

study. We are currently working on further ways of validating

our results, potentially using phantoms.

V. CONCLUSIONS AND FUTURE PLANS

We have outlined the issues in producing a DSS for

clinicians using abdominal scans. Rather than trying to fully-

automate the process, we are looking towards a system that

will integrate in with the way that health professionals work,

and with their need to keep control. In discussion with our

clinical partners we think that the DSS proposed will be

acceptable, and we are currently focusing on some of the

technological challenges, which primarily revolve around the

segmentation and the activities down-stream from that.

The technical challenges are non-trivial. The above tech-

niques, although they work well, rely on region adjacency

information. This is stored in a region adjacency graph. If

the image is not over-segmented, this information is easy

to use. Segmentation results can be far from ideal, though,

hence it being such a ‘hot’ research topic.

Ideally, the statistical analysis of the HUs should be used

in conjunction with some of the other techniques described,

and possibly also in conjunction with region adjacency

information. We intend to perfect these combinations in the

near future.

We also intend to devise a location method based on a

coordinate system centred on the spine. This strategy would

make it possible to use symmetry information more easily.

Once the feature identification can work reliably, it can

be applied for a variety of uses. Figure 6, based on manual

labelling, shows how accurate 3D reconstruction can be.
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