Automatic Spine Identification in Abdominal CT Slices
using Image Partition Forests

Stuart Golodetz

Irina Voiculescu

Stephen Cameron

Oxford University Computing Laboratory
Wolfson Building, Parks Road
Oxford OX1 3QD

Abstract

The identification of key features (e.g. organs and tu-
mours) in medical scans (CT, MRI, etc.) is a vital first step
in many other image analysis applications, but it is by no
means easy to identify such features automatically. Using
statistical properties of image regions alone, it is not al-
ways possible to distinguish between different features with
overlapping greyscale distributions. To do so, it helps to
make use of additional knowledge that may have been ac-
quired (e.g. from a medic) about a patient’s anatomy. One
important form this external knowledge can take is localiza-
tion information: this allows a program to narrow down its
search to a particular region of the image, or to decide how
likely a feature candidate is to be correct (e.g. it would be
worrisome were the aorta identified as running through the
middle of a kidney). To make use of this information, how-
ever, it is necessary to identify a suitable frame of reference
in which it can be specified. This frame should ideally be
based on rigid structures, e.g. the spine and ribs. In this pa-
per, we present a method for automatically identifying the
spine in image partition forests of abdominal CT slices as
a first step towards defining a robust coordinate system for
localization.

1. Introduction

From 3D visualization [9], to volume estimation [5], to
automatic landmark-based registration, there is a plethora of
medical imaging applications which rely on initially know-
ing where key features in medical images are to be found.
The process of identifying features such as organs and tu-
mours is difficult to automate in the case of medical scans
(e.g. CT and MRI), for the reasons we outlined in [3]: the
boundaries between adjacent features can be indistinct, and
it is difficult to encode positive shape constraints for fea-
tures which may differ significantly from slice to slice. Fur-
thermore, the greyscale (Hounsfield Unit, in the case of CT)
distributions for distinct features may overlap, making the
features difficult to distinguish by values alone.

Radiologists, who are expert at reading medical scans,
do not rely merely on greyscale values to tell features apart,

but make use of their knowledge of anatomy to decipher an
image. This anatomical knowledge can take many forms,
but one of the most straightforward is localization informa-
tion, i.e. knowing which features they expect to see in cer-
tain places in the image. Computer programs can equally
make good use of this information to narrow down their
search for a feature to a particular region of the image, or
to validate the candidate features suggested by other algo-
rithms.

To incorporate localization information into a computer
program, it needs to be supplied in an image-independent
way, i.e. relative to a fixed frame of reference. It makes
sense to search for (say) kidneys in regions specified relative
to a fixed point such as the spine [4, 8]; it makes far less
sense to search for them in regions specified purely in image
coordinates, which have little anatomical relevance.

In this paper, we present a region flooding method for
automatic spine identification in abdominal CT slices, as
an incremental step towards defining a robust frame of ref-
erence for localization purposes in such images. The ap-
proach works by selecting the candidate spine in an image
partition forest (IPF) of the image (see §2). In our previ-
ous work [3], we showed how ribs could be automatically
identified in CT images using a Bayesian approach; we ul-
timately plan to combine a refinement of that approach with
this current work to define a suitable coordinate system for
localization. Existing spine segmentation methods [1, 10]
achieve good results, but require significant work to im-
plement: for localization purposes, they are unnecessarily
complex, since we are only interested in using the spine
to establish a coordinate system. By contrast, our method
is well-suited to the specific application of localization be-
cause it produces good results whilst remaining simple to
understand and easy to implement.

The layout of this paper is as follows: in §2, we briefly
review the IPF data structure and its usage [3], and describe
a coherent framework for multi-layer region selection in
IPFs; in §3, we describe the spine identification algorithm
itself; in §4 we present our results; and in §5 we outline our
future plans and conclude.

(a) A simple striped image

Layers

(b) One possible partition forest for it: solid

lines are part of a tree; dashed lines are edges
in the RAG for a particular layer of the tree

Figure 1. Partition Forest Example

2. Image Partition Forests (IPFs)
2.1. Structure

The structure of an image partition forest (see Figure 1)
can be defined as follows:

Definition 1 Given a region R of an image, a partition
P(R) of R is a set of sub-regions {Ry, ..., R} such that
U;Ri=RandVi,j-i# j= R,NR; = 0.

Definition 2 Given a region set R = {Ry,...,R.}, a
region adjacency graph RAG(R) of R is a graph with
nodes R; and edges defined by w : R x R — RT. There
is an edge between any given pair of regions R; and R; iff
w(R;, R;) # oo, in which case w(R;, R;) gives the weight
on the edge.

Definition 3 A partition tree PT(R) of R is a tree where
each layer corresponds to a partition of R. Each node in
the tree represents a sub-region of R, with the root node
representing ‘R itself. The sub-region represented by any
non-leaf node (i.e. any node not in the lowest tree layer)
is the union of the sub-regions represented by its children.
In addition to the tree itself, we maintain a RAG for each
layer of the tree.

Definition 4 Given a partition P(I) = {Ry,..., R, } of an
image, a partition forest PF(I) of the image is a set of par-
tition trees, one for each R;. Note that there is no unique
partition P(I) of an image. Likewise, there is no unique
partition tree for any region in a given P(I). For that rea-
son, there are any number of different partition forests for
the same image.

Since partition forests for an image are not unique, it is
important to choose a construction algorithm that produces
a partition forest which is useful for a given problem do-
main. In the case of our segmentation work, we found that
a combination of the watershed and waterfall algorithms
[2, 6] could be used to produce a suitable initial partition
forest (in practice, a single partition tree, which is then suit-
able for further refinement by the user).

2.2. Usage

As we described in [3], the nodes in a partition forest
can be annotated efficiently with useful properties of the
sub-regions of the image they represent. This enables quick
(linear in the number of nodes) searches for regions satis-
fying certain properties. Since we have adjacency infor-
mation for each layer in the forest in the form of a RAG,
these searches can be quite intricate; for example, we can
search for regions which are small, have high max and mean
grey values, are moderately elongated and are surrounded
by darker regions (these make good candidates for ribs).

Because the initial construction of a partition forest is
based purely on the grey levels in an image, it is useful to in-
troduce anatomical knowledge to refine the forest at a later
stage. As reported in [3], there are various useful operations
that can be performed on the forest, including splitting and
merging regions, and moving a subtree in the partition to
be a child of a different parent node in the layer above its
root. It is also important that certain regions in the tree can
be identified as being particular features of interest, e.g. a
kidney. These operations are non-trivial in that they require
careful changes to the partition forest, but can be done in an
efficient way (including updating node annotations) as we
described [3].

2.3. Multi-Layer Selection

In order to facilitate easy editing of the partition forest,
it is important to support the selection of forest nodes. Al-
lowing the user or an algorithm to refer to a single node in
the forest is evidently a simple process: all that is necessary
is to define a suitable system of node identifiers (e.g. in our
work, we use identifiers of the form (layer, index) to refer
to nodes in the forest: we number nodes in layers rather than
by tree — see Figure 1). Further, each parent node in the
tree represents the union of the sub-regions represented by
its children; for example, in Figure 1, selecting node (1, 2)
is equivalent to selecting nodes (0, 5) and (0, 6).

This alternative viewpoint is the motivation behind the
useful idea of multi-layer node selection. Letting PS(I) be
the pixel set of image I, and the current selection be a set

(b) Adding (0,3)

(a) Initial selection (grey)

(c) Consolidating (1, 1)

(d) Consolidating (2, 0) (e) Consolidating (3, 0)

Figure 2. Adding a node to a multi-layer selection

of pixels S C PS(I), we define a minimal node representa-
tion of .S, which we will denote as MNR()S), as the smallest
set of nodes that represents .S. This implies that we select
a parent node rather than its children individually; for ex-
ample in Figure 1, consider the selection S of all pixels in
(0,2), (0,3) and (0,4), then MNR(S) = {(0,2),(1,1)},
and if we removed the pixels in (0, 3) from the selection
MNR(S) would become {(0,2),(0,4)}. Such a minimal
representation will naturally give rise to nodes at different
levels, and hence the term multi-layer selection.

Having explained this concept we now turn to how to im-
plement it using the minimal node representation described.
In particular, we focus on the two key operations involved,
adding and removing nodes. From an end-user perspective,
it is helpful if the operations can be made undoable: this can
easily be accomplished by recording which node identifiers
are added and removed from MNR(S) by each operation.

Adding a Node There are four cases to deal with when
adding a node to the selection:

1. The node is already in MNR(S) = do nothing.

2. An ancestor of the node is already in MNR(S) = do
nothing.

3. One or more descendants of the node are already in
MNR(S): we remove them and add this node instead,
since it contains all its descendants.

4. Otherwise: simply add the node to MNR(S) directly.

If we added a node identifier (either of the latter two
cases), we need to consolidate the selection as a final step:
this involves replacing any node whose children are all se-
lected with the node itself in MINR(S). We only need to
consider nodes which might have been affected by the new
node addition when performing this process: thus, it suf-
fices to recursively consolidate nodes from the parent of the
added node upwards. If at any stage one of the children of
the current node is not part of the selection, the consolida-
tion process terminates; otherwise, we recurse on the parent
of the node we just consolidated. See Figure 2 for an exam-
ple.

Removing a Node There are four cases to deal with when
removing a node from the selection as well:

1. The node is in MNR(S) = remove it.

2. An ancestor of the node is in MNR(S); this case will
be covered below.

3. Some descendants of the node are in MNR(S) = re-
move them.

4. Otherwise no part of S lies within the region repre-
sented by the node, so do nothing.

The interesting case involves removing a node whose an-
cestor is in MNR(S). To do this, we find the trail of nodes in
the tree leading from the ancestor to the node itself. We then
recursively split the nodes along this trail until we get back
to the original node: the intermediate MNR(S) then con-
tains the original node and we can simply remove it. For
example, consider Figure 2 in reverse (i.e. consider remov-
ing (0, 3) from the selection in (e)). Here, the trail of nodes
from the ancestor (namely (3,0)) is (3,0), (2,0), (1,1).
Each of these should be split in turn until the representa-
tion contains the grey nodes in (b): at this point, removing
(0, 3) is trivial.

3. Spine Identification

Our spine identification algorithm (see Figure 4) works
by doing region growing on the region adjacency graphs
stored with the image’s partition forest (note that this ap-
proach differs from various region growing segmentation
algorithms which work only on the pixels of an image —
e.g. [4, 7]). The outline of the algorithm is as follows (de-
tails are given later):

1. Seed Finding. Traverse the forest to find regions
which satisfy a user-specified seed criterion.

2. Region Flooding. Determine a preliminary fea-
ture (represented as a multi-layer selection) by region
flooding from the various seeds.

(a) Construct a map to indicate whether or not each
seed has yet been visited during the flooding pro-
cess (each seed is initially marked as unvisited).

(a) The region to search

(b) A spine seed in partition O

(c) A spine seed in partition 1

Figure 3. Finding suitable spine seeds: it suffices to look for moderately-sized, bright regions with

centroids within the box shown

(b) For each seed:

i. If the seed has not already been visited, iden-
tify a potential partial feature for it by per-
forming a flood from it in the RAG for its
layer. The flooding process is controlled by
a user-specified flooding criterion.

ii. If the potential partial feature satisfies a user-
specified validation criterion, add the re-
gions it contains to the preliminary feature.

iii. Mark any seeds which were reached from
the current seed as having been visited.

3. Post-Processing. Remove any regions which were un-
desirably added by the flooding process (the regions to
be removed are selected using a user-specified removal
criterion).

(a) For each region in the MNR of the preliminary
feature:

i. If the region satisfies the removal criterion,
remove it using the appropriate algorithm
for multi-layer selections described earlier.

ii. Otherwise, recurse on its children (if any).

It is worth noting that this is a general scheme that can be
used for features other than the spine, provided that suitable
seed, flooding, validation and removal criteria can be spec-
ified in each case. The role of multi-layer selection in the
process is two-fold: it is used to union the partial features
identified in the second phase into the preliminary feature,
and it is then used to facilitate modifications to the feature
by the post-processing phase.

3.1. Seed Finding

The criterion we use to find suitable spine seeds (in a
512x512 image) is that regions should be moderately-sized
(area > 500 pixels), fairly bright (grey value mean > 190,
where 255 is white) and roughly centred in the bottom-
middle of the image (200 < z < 312 and y > 200) —

see Figure 3. This is sufficient in the case of the spine, since
the only other features of sufficient brightness in an image
(the ribs) are either smaller than the specified threshold, or
not centred within the specified box.

3.2. Region Flooding

As mentioned earlier, a region flooding process is used to
determine a potential partial feature for each as yet unvisited
seed. In each case, flooding starts from the seed and works
recursively: to flood from a region r, we consider as yet un-
seen regions adjacent to r (in the RAG of the seed’s layer)
and test them using the flooding criterion. Iff a region sat-
isfies the criterion, we add it to the potential partial feature
for the seed and recurse on it. (In either case, we mark the
tested region as seen to ensure that it is never tested again.)

The flooding criterion itself can be arbitrarily compli-
cated (e.g. it can depend on the properties of the current
and adjacent regions, and on those of the current partial fea-
ture as a whole, if necessary), but in our case we found it
sufficient to use a criterion which ensured that the adjacent
region’s grey value mean was > 170 and that its centroid
satisfied 200 < z < 312 and y > 256.

As remarked above, each partial feature is validated to
ensure that it should form part of the preliminary spine, and
added to it if it passes. In our implementation, the valida-
tion criterion simply ensures that the centroid of the partial
feature is appropriately in the bottom-centre of the image
(200 < z < 312 and y > 256).

3.3. Post-Processing

The preliminary spine generated by the region flooding
process is generally fairly good, but it’s possible that in
some cases we added regions we didn’t intend. In particular,
this can happen because either: (a) we added a large region
whose grey value mean was high, but there were smaller re-
gions contained within it with a low grey value mean; or (b)
we had to set the grey value mean tolerance in our flooding
criterion sufficiently low to capture greyer bits of the spine,

w

Seeds (Layer 1) Seeds (Layer 2)

w

v

Union

Post-Process

Figure 4. The spine identification process (see text)

but that caused us to inadvertently capture bright grey things
like the aorta (which can be quite close to the spine in some
images) as well.

We therefore post-process the results of the flooding to
attempt to remove these undesirable features. The process
proceeds down each selected subtree, looking for regions
to be removed. In the case of our spine identifier, our re-
moval criterion had two different cases, to deal with each
of the two issues identified above. In the case of (a), we
found that removing dark regions (grey value mean < 150)
of a reasonable size (area > 400) worked well. For (b),
we simply removed things which looked like the aorta
(400 < area < 700 and 160 < grey value mean < 180
and elongatedness < 1.5). (A definition of elongatedness
appears in [3].)

4. Results

We tested our spine identification algorithm on images
from a number of series (see Figure 5 for some exam-
ples) and it proved quite robust. It can still fail some-
times in cases where the spine appears significantly darker
than usual (e.g. MC-2-135) or where there are small pieces
of spine which are disconnected from the primary feature
(e.g. MC-2-136 and MC-2-137), but in the overwhelming
majority (87.3%) of the cases we tested it performed well,
as seen in Table 1 (in which A denotes a perfect result for a
slice, B an almost perfect one, C an adequate one, and F a
failure). It is worth noting that since the result is presented
visually to the user (e.g. a radiologist) as a multi-layer selec-
tion, it is very easy for them to verify the output and make
alterations where desired.

Seeds (Layer 3) Final Result
Series | A B C F | A/B Total | %A/B
BAH-2 |11 4 1 1 15 17 88.2
BT-2 |25 12 3 1 37 41 90.2
EJ-2 8 2 1 O 20 21 95.2
MC2 |6 2 1 2 8 11 72.7
M2 |10 5 O 6 15 21 71.4
RC-2 7 5 0 0 12 12 100.0
Sb-2 |7 3 1 0 10 11 90.9
All 84 33 7 10| 117 134 87.3

Table 1. Spine identification results (ordered
alphabetically by series). See Figure 5 for
sample images.

5. Conclusions and Future Work

In this paper, we presented an automatic approach to
spine identification in abdominal CT images based on re-
gion flooding over the region adjacency graphs associated
with a partition forest for an image. As illustrated, this
yielded good results on images from a number of different
series. We also presented a general approach to multi-layer
selection in partition hierarchies: this is useful in many
other contexts besides automatic segmentation (in particu-
lar, we have found it useful for managing meta-data stored
hierarchically in a database).

Future work will aim to build a system to automati-
cally define a robust frame of reference (for localization
purposes) on each CT slice, based on the spine identifica-
tion algorithm presented here, and our previous work on rib
idenitification [3]. We also feel that the flooding algorithm

BT-Z-66

MC-2-135

MC-2-137

MiC-2-138 MiZ-2-139

aD-2-68

SD-2-69

Figure 5. Results of the spine identification algorithm on images from four different series (BT-2,
EJ-2, MC-2 and SD-2): each sub-region is surrounded by its own red border, thus double-thickness
borders indicate an internal boundary rather than the boundary of the feature. See Table 1 for com-

prehensive statistical results by series.

serves as a useful template on which to build more intricate
automatic identifiers for other features, and plan to study
this further.

6. Acknowledgements

We would like to thank medics and technicians from the
Churchill Hospital, Oxford, for their invaluable help and
support: Zo€ Traill Consultant Radiologist, David Cranston
Consultant Urological Surgeon, Mark Sullivan Consultant
Urological Surgeon, Andrew Protheroe Consultant Medi-
cal Oncologist, Anthony MclIntyre Superintendent Radiog-
rapher, Nilay Patel Specialist Registrar, Rob Ritchie Aca-
demic Clinical Fellow in Urology. We are also grateful
to Clarice Poon who carried out some of the statistical
analysis.

References

[1] N. Archip, P.-J. Erard, M. Egmont-Petersen, J.-M. Haefliger,
and J.-F. Germond, ”A Knowledge-Based Approach to Au-
tomatic Detection of the Spinal Cord in CT Images”, I[EEE
Transactions on Medical Imaging, 21(12), December 2002.

[2] S. Beucher, ”Watershed, hierarchical segmentation and wa-
terfall algorithm”, In Proceedings of ISMM’94, pp. 69-76,
1994.

(3]

(4]

(5]

(6]

(71

(8]

(9]

(10]

S. Golodetz, 1. Voiculescu, and S. Cameron, "Region Anal-
ysis of Abdominal CT Scans using Image Partition Forests”,
In Proceedings of CSTST 08, pp. 432-7, October 2008.
D.-T. Lin, C.-C. Lei, and S.-W. Hung, "Computer-Aided
Kidney Segmentation on Abdominal CT Images”, IEEE
Transactions on Information Technology in Biomedicine,
10(1), January 2006, pp. 59-65.

R. Lu and P. Marziliano, ”Liver Tumor Volume Estimation
by Semi-Automatic Segmentation Method”, In Proceedings
of the 2005 IEEE Engineering in Medicine and Biology 27th
Annual Conference, 2005.

B. Marcotegui and S. Beucher, Fast Implementation of Wa-
terfall Based on Graphs, In Mathematical Morphology: 40
Years On, Springer Netherlands, 2005.

R. Pohle and K. Toennies, ”’Segmentation of Medical Images
Using Adaptive Region Growing”, In Proceedings of SPIE
(Medical Imaging), volume 4322, pp. 1337-1346, 2001.
K.-S. Seo, L. C. Ludeman, S.-J. Park, and J.-A. Park, “Ef-
ficient Liver Segmentation Based on the Spine”, Springer
Lecture Notes in Computer Science, 2004, pp. 400-9.

Z. Wu and J. M. S. Jr., "Multiple material marching cubes
algorithm”, International Journal for Numerical Methods in
Engineering, 58(2), July 2003, pp. 189-207.

J. Yao, S. D. O’Connor, and R. M. Summers, ”Automated
Spinal Column Extraction and Partitioning”, In 3rd IEEE
International Symposium on Biomedical Imaging: Nano to
Macro, pp. 390-393, 2006.

